

Feb 19-8:47 AM

Feb 13-9:12 PM

$$x \rightarrow Duta$$
 element

 $\sum x \rightarrow Sum$ of data elements

 $\sum \chi^2 \rightarrow Sum$ of data elements

 $\overline{\chi} \rightarrow \chi - bar \rightarrow Sample$ Mean

 $S^2 \rightarrow Sample$ Variance

 $S \rightarrow Sample$ Standard deviation

 $n \rightarrow Sample$ Size

 $\overline{\chi} = \frac{\sum \chi}{n}$ $S^2 = \frac{\sum (\chi - \overline{\chi})^2}{n-1}$ or $S^2 = \frac{n \sum \chi^2 - (z_1)^2}{n(n-1)}$
 $S = \sqrt{S^2}$

Consider the Sample 2, 3, 5, 5, 8

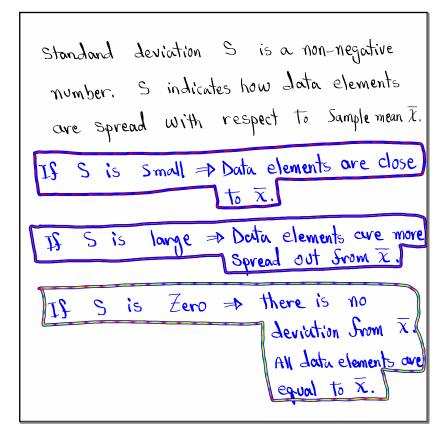
 $n = 5$ $\sum \chi_2 = 2 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 2 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 2 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 2 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 2 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 2 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 5 + 5 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 3 + 9 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 3 + 9 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 3 + 9 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 9 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 9 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 9 + 9 = 23$
 $\sum \chi^2 = 3 + 3 + 9$

Feb 20-6:55 PM

Suppose
$$n=8$$
, $\geq x=28$, $\geq x^{2}=142$, Min=1, Max=9.

1) Range = Max - Min
$$= 9+1 = 9$$

$$= 9+1 = 5$$
3) $\overline{x} = \frac{2x}{n} = \frac{28}{8} = \frac{14}{4} = \frac{1}{2} = 3.5 + 1$
5) $S = \sqrt{5^{2}} = \sqrt{6.266}$


$$\approx 2.501$$
The Range Rule-0f-Thumb
$$= \frac{8.142 - 28^{2}}{8(8-1)} = \frac{352}{56}$$

$$\approx 2.501$$
The Range Rule-0f-Thumb
$$= 8 + \frac{2}{4} = \frac{3}{4} = \frac{2}{4}$$

$$= 8 + \frac{2}{4} = \frac{2}{4}$$

$$= 8 + \frac{2}{4} = \frac{2}{4}$$

Feb 20-7:04 PM

Feb 20-7:12 PM

Consider the Sumple below

2, 3, 3, 3, 4

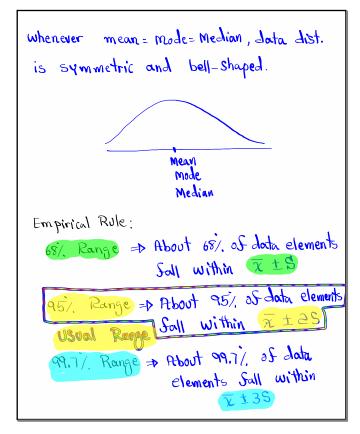
$$n=5$$
 $2x^2=47$
 $x=\frac{2x}{n}=\frac{15}{5}=3$
 $x=\frac{2x}{n}=\frac{15}{5}=3$
 $x=\frac{2x}{n}=\frac{15}{5}=3$
 $x=\frac{15}{20}=\frac{15}{5}$

S is Sairly Small,

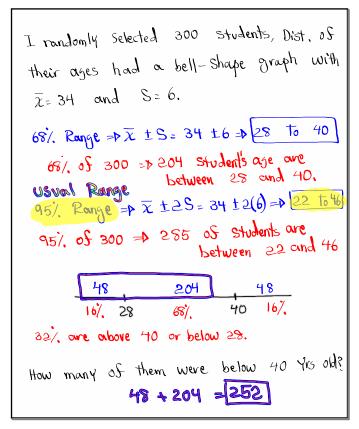
Jota elements are close to \overline{x} .

Feb 20-7:17 PM

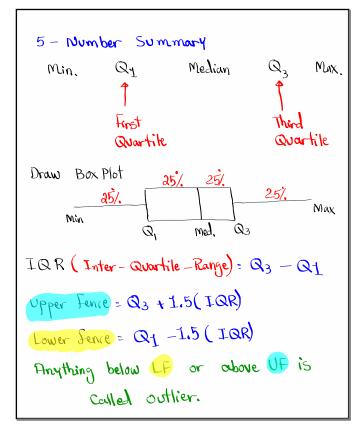
Consider the Sample below 2, 3, 3, 3, 29

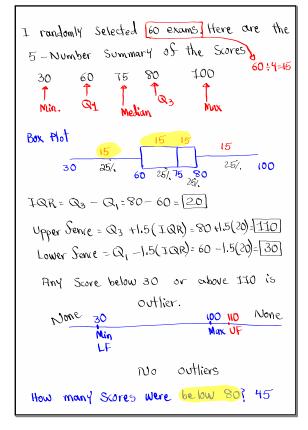

$$n=5$$
 $2x=40$
 $2x^2=872$
 $x=\frac{2x}{n}=\frac{40}{5}=8$
 $x=\frac{2x}{n}=\frac{2x}{$

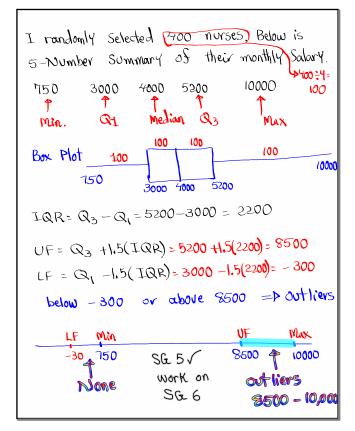
Feb 20-7:23 PM

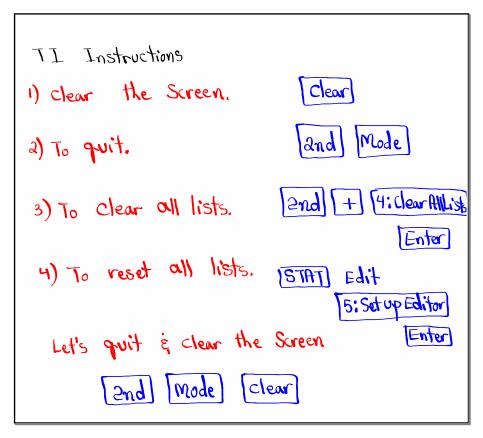

Consider the Sample below

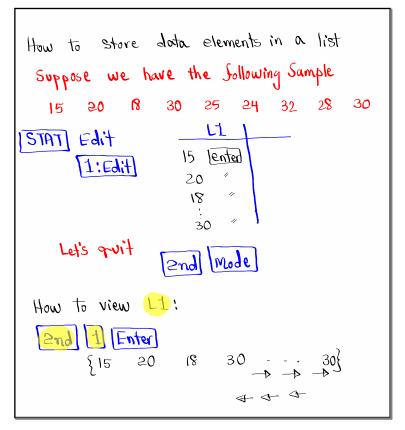
H 4 4 4 4

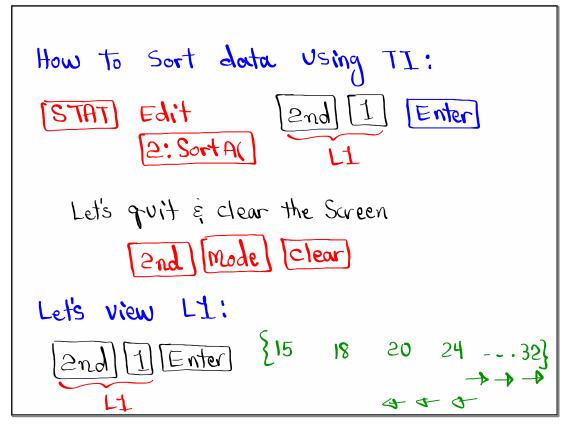

$$n=5$$
 $Zx=20$
 $Z=20$
 $Z=20$


Feb 20-7:36 PM

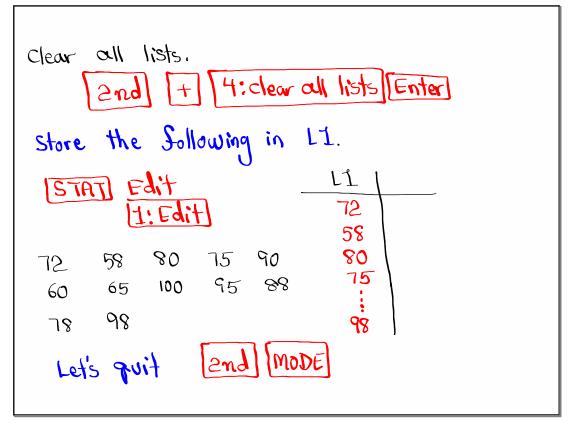

Feb 20-7:43 PM

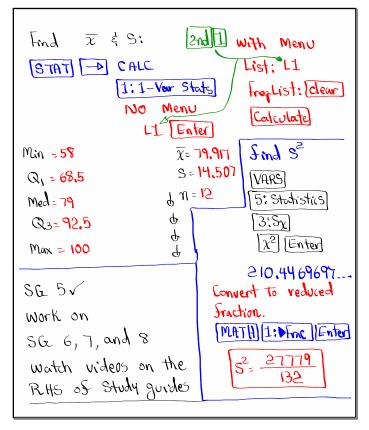

Feb 20-8:06 PM

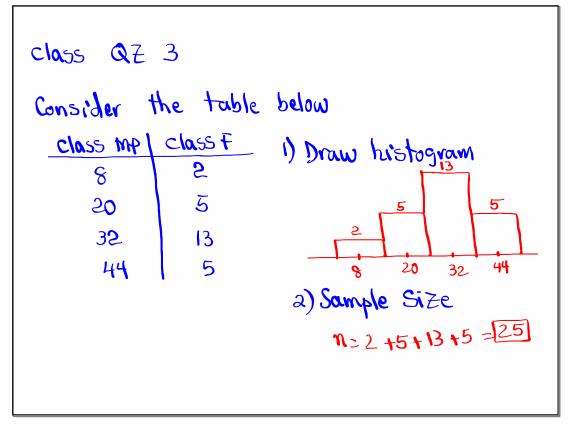

Feb 20-8:12 PM


Feb 20-8:21 PM

Feb 20-8:30 PM


Feb 20-8:39 PM


Feb 20-8:46 PM


Feb 20-8:56 PM

Feb 20-9:09 PM

Feb 20-9:13 PM

